Towards Generalizability of Multi-Agent Reinforcement Learning in Graphs with Recurrent Message Passing
Key: WBA+24
Author: Jannis Weil, Zhenghua Bao, Osama Abboud, Tobias Meuser
Date: 2024
Kind: In proceedings
Book title: Proceedings of the 23rd International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2024)
Keywords: Multi-Agent Reinforcement Learning, Graph Neural Networks, Communication Networks
Abstract: Graph-based environments pose unique challenges to multi-agent reinforcement learning. In decentralized approaches, agents operate within a given graph and make decisions based on partial or outdated observations. The size of the observed neighborhood limits the generalizability to different graphs and affects the reactivity of agents, the quality of the selected actions, and the communication overhead. This work focuses on generalizability and resolves the trade-off in observed neighborhood size with a continuous information flow in the whole graph. We propose a recurrent message-passing model that iterates with the environment's steps and allows nodes to create a global representation of the graph by exchanging messages with their neighbors. Agents receive the resulting learned graph observations based on their location in the graph. Our approach can be used in a decentralized manner at runtime and in combination with a reinforcement learning algorithm of choice. We evaluate our method across 1000 diverse graphs in the context of routing in communication networks and find that it enables agents to generalize and adapt to changes in the graph.
View Full paper (PDF) | Download Full paper (PDF)

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.