An Evaluation of Extrapolation and Filtering Techniques in Head Tracking for Virtual Environments to Reduce Cybersickness
Key: GWC+17-1
Author: Augusto Garcia-Agundez, Aiko Westmeier, Polona Caserman, Robert Konrad, Stefan Göbel
Date: October 2017
Kind: In proceedings
Publisher: Springer
Book title: Joint International Conference on Serious Games
Abstract: Currently, numerous users who employ HMD devices such as the Oculus Rift develop symptoms similar to motion sickness. Recent literature defines this phenomenon as cybersickness, and one of its main causes as latency. This contribution aims to analyze the accuracy of different extrapolation and filtering techniques to accurately predict head movements, reducing the impact of latency. For this purpose, 10 participants played a VR game that required quick and subsequent head rotations, during which a total of 150.000 head positions were captured in the pitch and yaw rotation axes. These rotational movements were then extrapolated and filtered. Linear extrapolation seems to provide best results, with a prediction error of approximately 0.06 arc degrees. Filtering the extrapolated data further reduces the error to 0.04 arc degrees on average. In conclusion, until future VR systems can significantly reduce latency, extrapolating head movements seems to provide a low-cost solution with an acceptable prediction error, although extrapolating the roll axis movements remains to be challenging.
Official URL

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.